博客
关于我
推荐系统项目实战一(推荐业务架构介绍)
阅读量:215 次
发布时间:2019-02-28

本文共 550 字,大约阅读时间需要 1 分钟。

架构与业务流

基础数据层

该层主要处理业务数据和用户行为日志数据,数据来源于前端埋点和系统日志。其中,用户数据包括注册信息、个人资料等基础信息;文章数据则涵盖用户上传的内容、发布信息等基础属性。用户行为日志数据实时流向Kafka,用于实时计算和分析;而业务数据则以批量形式存储在HDFS上,为后续的离线分析提供数据支持。

数据处理层

这一层面对基础数据进行深度处理,主要包括用户画像和文章画像的构建。具体流程包括:基于离线数据和实时数据,通过多种算法进行数据分析和特征提取,构建用户兴趣模型和阅读习惯模型。

召回与排序

召回环节通过算法逻辑从海量文章中筛选出用户感兴趣的候选集合,集合规模通常在上千级别。排序环节则对候选文章进行用户画像模型结果的排序,生成最终的推荐列表。

推荐业务层

该层通过提供RESTful接口为推荐业务场景服务,主要包括以下功能:

  • Feed流推荐:支持用户在今日推荐场景中通过不断下拉刷新获取内容流。

转载地址:http://jvxp.baihongyu.com/

你可能感兴趣的文章
nullnullHuge Pages
查看>>
NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
查看>>
null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
查看>>
Number Sequence(kmp算法)
查看>>
Numix Core 开源项目教程
查看>>
numpy
查看>>
Numpy 入门
查看>>
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>